top of page

Group

Public·12 members
Gennady Belyakov
Gennady Belyakov

Ni Vision Development Module 2011 Crack: A Complete Guide to Download, Install, and Use It


Abstract:Pavement crack detection is essential for safe driving. The traditional manual crack detection method is highly subjective and time-consuming. Hence, an automatic pavement crack detection system is needed to facilitate this progress. However, this is still a challenging task due to the complex topology and large noise interference of crack images. Recently, although deep learning-based technologies have achieved breakthrough progress in crack detection, there are still some challenges, such as large parameters and low detection efficiency. Besides, most deep learning-based crack detection algorithms find it difficult to establish good balance between detection accuracy and detection speed. Inspired by the latest deep learning technology in the field of image processing, this paper proposes a novel crack detection algorithm based on the deep feature aggregation network with the spatial-channel squeeze & excitation (scSE) attention mechanism module, which calls CrackDFANet. Firstly, we cut the collected crack images into 512 512 pixel image blocks to establish a crack dataset. Then through iterative optimization on the training and validation sets, we obtained a crack detection model with good robustness. Finally, the CrackDFANet model verified on a total of 3516 images in five datasets with different sizes and containing different noise interferences. Experimental results show that the trained CrackDFANet has strong anti-interference ability, and has better robustness and generalization ability under the interference of light interference, parking line, water stains, plant disturbance, oil stains, and shadow conditions. Furthermore, the CrackDFANet is found to be better than other state-of-the-art algorithms with more accurate detection effect and faster detection speed. Meanwhile, our algorithm model parameters and error rates are significantly reduced.Keywords: pavement crack detection; CrackDFANet; lightweight backbone network; scSE attention mechanism module; sub-network aggregation; sub-stage aggregation; detection speed; error rates




Ni Vision Development Module 2011 Crack


About

Welcome to the group! You can connect with other members, ge...

Members

Group Page: Groups_SingleGroup
bottom of page